Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 613
Filtrar
1.
J Neurol ; 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38583105

RESUMO

OBJECTIVE: The aim of this study was to explore the relation of language functional MRI (fMRI)-guided tractography with postsurgical naming decline in people with temporal lobe epilepsy (TLE). METHODS: Twenty patients with unilateral TLE (9 left) were studied with auditory and picture naming functional MRI tasks. Activation maxima in the left posterobasal temporal lobe were used as seed regions for whole-brain fibre tractography. Clinical naming performance was assessed preoperatively, 4 months, and 12 months following temporal lobe resection. Volumes of white matter language tracts in both hemispheres as well as tract volume laterality indices were explored as moderators of postoperative naming decline using Pearson correlations and multiple linear regression with other clinical variables. RESULTS: Larger volumes of white matter language tracts derived from auditory and picture naming maxima in the hemisphere of subsequent surgery as well as stronger lateralization of picture naming tract volumes to the side of surgery correlated with greater language decline, which was independent of fMRI lateralization status. Multiple regression for picture naming tract volumes was associated with a significant decline of naming function with 100% sensitivity and 93% specificity at both short-term and long-term follow-up. INTERPRETATION: Naming fMRI-guided white matter language tract volumes relate to postoperative naming decline after temporal lobe resection in people with TLE. This can assist stratification of surgical outcome and minimize risk of postoperative language deficits in TLE.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38639701

RESUMO

BACKGROUND: Extracellular vesicles (EVs) isolated from human heart-derived cells have shown promise in suppressing inflammation and fibroblast proliferation. However, their precise benefits in atrial fibrillation (AF) prevention and the role of their antifibrotic/anti-inflammatory properties remain unclear. OBJECTIVES: The purpose of this study was to conduct a head-to-head comparison of antiarrhythmic strategies to prevent postoperative AF using a rat model of sterile pericarditis. Specifically, we aimed to assess the efficacy of amiodarone (a classic antiarrhythmic drug), colchicine (an anti-inflammatory agent), and EVs derived from human heart-derived cells, which possess anti-inflammatory and antifibrotic properties, on AF induction, inflammation, and fibrosis progression. METHODS: Heart-derived cells were cultured from human atrial appendages under serum-free xenogen-free conditions. Middle-aged Sprague Dawley rats were randomized into different groups, including sham operation, sterile pericarditis with amiodarone treatment, sterile pericarditis with colchicine treatment (2 dose levels), and sterile pericarditis with intra-atrial injection of EVs or vehicle. Invasive electrophysiological testing was performed 3 days after surgery before sacrifice. RESULTS: Sterile pericarditis increased the likelihood of inducing AF. Colchicine and EVs exhibited anti-inflammatory effects, but only EV treatment significantly reduced AF probability, whereas colchicine showed a positive trend without statistical significance. EVs and high-dose colchicine reduced atrial fibrosis by 46 ± 2% and 26 ± 2%, respectively. Amiodarone prevented AF induction but had no effect on inflammation or fibrosis. CONCLUSIONS: In this study, both amiodarone and EVs prevented AF, whereas treatment with colchicine was ineffective. The additional anti-inflammatory and antifibrotic effects of EVs suggest their potential as a comprehensive therapeutic approach for AF prevention, surpassing the effects of amiodarone or colchicine.

3.
Trends Cogn Sci ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38580528

RESUMO

Working memory (WM) is a fundamental aspect of cognition. WM maintenance is classically thought to rely on stable patterns of neural activities. However, recent evidence shows that neural population activities during WM maintenance undergo dynamic variations before settling into a stable pattern. Although this has been difficult to explain theoretically, neural network models optimized for WM typically also exhibit such dynamics. Here, we examine stable versus dynamic coding in neural data, classical models, and task-optimized networks. We review principled mathematical reasons for why classical models do not, while task-optimized models naturally do exhibit dynamic coding. We suggest an update to our understanding of WM maintenance, in which dynamic coding is a fundamental computational feature rather than an epiphenomenon.

4.
Neuron ; 112(5): 692-693, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38452737

RESUMO

With recordings from temporal, parietal, and frontal regions of the behaving monkey brain, accompanied by a powerful method for optogenetic silencing of the frontal region, Mendoza-Halliday et al. compare network functions for working memory and visual selective attention.


Assuntos
Encéfalo , Cognição , Memória de Curto Prazo , Lobo Frontal , Atenção , Mapeamento Encefálico , Imageamento por Ressonância Magnética/métodos , Lobo Parietal
5.
Epilepsia ; 65(4): 1072-1091, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38411286

RESUMO

OBJECTIVE: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current corticocentric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural magnetic resonance imaging in 1602 adults with epilepsy and 1022 healthy controls across 22 sites from the global ENIGMA-Epilepsy working group. METHODS: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in (1) all epilepsies, (2) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), (3) nonlesional temporal lobe epilepsy, (4) genetic generalized epilepsy, and (5) extratemporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness. RESULTS: Across all epilepsies, reduced total cerebellar volume was observed (d = .42). Maximum volume loss was observed in the corpus medullare (dmax = .49) and posterior lobe gray matter regions, including bilateral lobules VIIB (dmax = .47), crus I/II (dmax = .39), VIIIA (dmax = .45), and VIIIB (dmax = .40). Earlier age at seizure onset ( η ρ max 2 = .05) and longer epilepsy duration ( η ρ max 2 = .06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE, with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls. SIGNIFICANCE: We provide robust evidence of deep cerebellar and posterior lobe subregional gray matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in nonmotor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellar subregional damage into neurobiological models of epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Síndromes Epilépticas , Adulto , Humanos , Epilepsia do Lobo Temporal/complicações , Fenitoína , Estudos Transversais , Síndromes Epilépticas/complicações , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Convulsões/complicações , Imageamento por Ressonância Magnética/métodos , Atrofia/patologia
6.
Cortex ; 173: 1-15, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354669

RESUMO

The extent to which tumour-infiltrated brain tissue contributes to cognitive function remains unclear. We tested the hypothesis that cortical tissue infiltrated by diffuse gliomas participates in large-scale cognitive circuits using a unique combination of intracranial electrocorticography (ECoG) and resting-state functional magnetic resonance (fMRI) imaging in four patients. We also assessed the relationship between functional connectivity with tumour-infiltrated tissue and long-term cognitive outcomes in a larger, overlapping cohort of 17 patients. We observed significant task-related high gamma (70-250 Hz) power modulations in tumour-infiltrated cortex in response to increased cognitive effort (i.e., switch counting compared to simple counting), implying preserved functionality of neoplastic tissue for complex tasks probing executive function. We found that tumour locations corresponding to task-responsive electrodes exhibited functional connectivity patterns that significantly co-localised with canonical brain networks implicated in executive function. Specifically, we discovered that tumour-infiltrated cortex with larger task-related high gamma power modulations tended to be more functionally connected to the dorsal attention network (DAN). Finally, we demonstrated that tumour-DAN connectivity is evident across a larger cohort of patients with gliomas and that it relates to long-term postsurgical outcomes in goal-directed attention. Overall, this study contributes convergent fMRI-ECoG evidence that tumour-infiltrated cortex participates in large-scale neurocognitive circuits that support executive function in health. These findings underscore the potential clinical utility of mapping large-scale connectivity of tumour-infiltrated tissue in the care of patients with diffuse gliomas.


Assuntos
Encéfalo , Glioma , Humanos , Encéfalo/fisiologia , Função Executiva/fisiologia , Cognição/fisiologia , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Vias Neurais/fisiologia
7.
Neurology ; 102(4): e208007, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38290094

RESUMO

BACKGROUND AND OBJECTIVE: Patients with presumed nonlesional focal epilepsy-based on either MRI or histopathologic findings-have a lower success rate of epilepsy surgery compared with lesional patients. In this study, we aimed to characterize a large group of patients with focal epilepsy who underwent epilepsy surgery despite a normal MRI and had no lesion on histopathology. Determinants of their postoperative seizure outcomes were further studied. METHODS: We designed an observational multicenter cohort study of MRI-negative and histopathology-negative patients who were derived from the European Epilepsy Brain Bank and underwent epilepsy surgery between 2000 and 2012 in 34 epilepsy surgery centers within Europe. We collected data on clinical characteristics, presurgical assessment, including genetic testing, surgery characteristics, postoperative outcome, and treatment regimen. RESULTS: Of the 217 included patients, 40% were seizure-free (Engel I) 2 years after surgery and one-third of patients remained seizure-free after 5 years. Temporal lobe surgery (adjusted odds ratio [AOR]: 2.62; 95% CI 1.19-5.76), shorter epilepsy duration (AOR for duration: 0.94; 95% CI 0.89-0.99), and completely normal histopathologic findings-versus nonspecific reactive gliosis-(AOR: 4.69; 95% CI 1.79-11.27) were significantly associated with favorable seizure outcome at 2 years after surgery. Of patients who underwent invasive monitoring, only 35% reached seizure freedom at 2 years. Patients with parietal lobe resections had lowest seizure freedom rates (12.5%). Among temporal lobe surgery patients, there was a trend toward favorable outcome if hippocampectomy was part of the resection strategy (OR: 2.94; 95% CI 0.98-8.80). Genetic testing was only sporadically performed. DISCUSSION: This study shows that seizure freedom can be reached in 40% of nonlesional patients with both normal MRI and histopathology findings. In particular, nonlesional temporal lobe epilepsy should be regarded as a relatively favorable group, with almost half of patients achieving seizure freedom at 2 years after surgery-even more if the hippocampus is resected-compared with only 1 in 5 nonlesional patients who underwent extratemporal surgery. Patients with an electroclinically identified focus, who are nonlesional, will be a promising group for advanced molecular-genetic analysis of brain tissue specimens to identify new brain somatic epilepsy genes or epilepsy-associated molecular pathways.


Assuntos
Epilepsias Parciais , Epilepsia do Lobo Temporal , Epilepsia , Humanos , Estudos de Coortes , Eletroencefalografia , Epilepsias Parciais/diagnóstico por imagem , Epilepsias Parciais/cirurgia , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Epilepsia do Lobo Temporal/cirurgia , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Convulsões , Resultado do Tratamento
8.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38244562

RESUMO

Theoretical models suggest that executive functions rely on both domain-general and domain-specific processes. Supporting this view, prior brain imaging studies have revealed that executive activations converge and diverge within broadly characterized brain networks. However, the lack of precise anatomical mappings has impeded our understanding of the interplay between domain-general and domain-specific processes. To address this challenge, we used the high-resolution multimodal magnetic resonance imaging approach of the Human Connectome Project to scan participants performing 3 canonical executive tasks: n-back, rule switching, and stop signal. The results reveal that, at the individual level, different executive activations converge within 9 domain-general territories distributed in frontal, parietal, and temporal cortices. Each task exhibits a unique topography characterized by finely detailed activation gradients within domain-general territory shifted toward adjacent resting-state networks; n-back activations shift toward the default mode, rule switching toward dorsal attention, and stop signal toward cingulo-opercular networks. Importantly, the strongest activations arise at multimodal neurobiological definitions of network borders. Matching results are seen in circumscribed regions of the caudate nucleus, thalamus, and cerebellum. The shifting peaks of local gradients at the intersection of task-specific networks provide a novel mechanistic insight into how partially-specialized networks interact with neighboring domain-general territories to generate distinct executive functions.


Assuntos
Conectoma , Função Executiva , Humanos , Função Executiva/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Núcleo Caudado , Atenção/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia
9.
Theranostics ; 14(2): 608-621, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169629

RESUMO

Rationale: Extracellular vesicles (EVs) from human explant-derived cells injected directly into the atria wall muscle at the time of open chest surgery reduce atrial fibrosis, atrial inflammation, and atrial fibrillation (AF) in a rat model of sterile pericarditis. Albeit a promising solution to prevent postoperative AF, the mechanism(s) underlying this effect are unknown and it is not clear if this benefit is dependent on EV dose. Methods: To determine the dose-efficacy relationship of EVs from human explant-derived cells in a rat model of sterile pericarditis. Increasing doses of EVs (106, 107, 108 or 109) or vehicle control were injected into the atria of middle-age male Sprague-Dawley rats at the time of talc application. A sham control group was included to demonstrate background inducibility. Three days after surgery, all rats underwent invasive electrophysiological testing prior to sacrifice. Results: Pericarditis increased the likelihood of inducing AF (p<0.05 vs. sham). All doses decreased the probability of inducing AF with maximal effects seen after treatment with the highest dose (109, p<0.05 vs. vehicle). Pericarditis increased atrial fibrosis while EV treatment limited the effect of pericarditis on atrial fibrosis with maximal effects seen after treatment with 108 or 109 EVs. Increasing EV dose was associated with progressive decreases in pro-inflammatory cytokine content, inflammatory cell infiltration, and oxidative stress. EVs decreased NLRP3 (NACHT, LRR, and PYD domains-containing protein-3) inflammasome activation though a direct effect on resident atrial fibroblasts and macrophages. This suppressive effect was exclusive to EVs produced by heart-derived cells as application of EVs from bone marrow or umbilical cords did not alter NLRP3 activity. Conclusions: Intramyocardial injection of incremental doses of EVs at the time of open chest surgery led to progressive reductions in atrial fibrosis and inflammatory markers. These effects combined to render atria resistant to the pro-arrhythmic effects of pericarditis which is mechanistically related to suppression of the NLRP3 inflammasome.


Assuntos
Fibrilação Atrial , Exossomos , Pericardite , Masculino , Ratos , Humanos , Animais , Fibrilação Atrial/prevenção & controle , Fibrilação Atrial/tratamento farmacológico , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos Sprague-Dawley , Fibrose
10.
Health Place ; 85: 103178, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38262260

RESUMO

Outdoor play in the home yard is an important source of physical activity for many preschoolers. This study investigated if home yard size and vegetation are related to preschooler outdoor play time. High-resolution remotely sensed data were used to distinguish between types of vegetation coverage in the home yard. Shrub and tree cover, and yard size, were positively associated with outdoor play. Following stratification by socio-economic status (SES - parent education), only tree cover was positively associated with preschooler outdoor play in low SES households. All types of vegetation cover were positively associated with preschooler outdoor play in higher SES households. This study highlights the importance of larger yard sizes and higher levels of vegetation for facilitating outdoor play in preschoolers.


Assuntos
Exercício Físico , Características da Família , Humanos , Classe Social
11.
J Immunol ; 212(5): 813-824, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224204

RESUMO

The MHC class I molecule H-2Dk conveys resistance to acute murine CMV infection in both C57L (H-2Dk transgenic) and MA/My mice. M.H2k/b mice are on an MA/My background aside from a C57L-derived region spanning the MHC (Cmv5s), which diminishes this resistance and causes significant spleen histopathology. To hone in on the effector elements within the Cmv5s interval, we generated several Cmv5-recombinant congenic mouse strains and screened them in vivo, allowing us to narrow the phenotype-associated interval >6-fold and segment the genetic mechanism to at least two independent loci within the MHC region. In addition, we sought to further characterize the Cmv5s-associated phenotypes in their temporal appearance and potential direct relationship to viral load. To this end, we found that Cmv5s histopathology and NK cell activation could not be fully mirrored in the MA/My mice with increased viral dose, and that marginal zone destruction was the first apparent Cmv5s phenotype, being reliably quantified as early as 2 d postinfection in the M.H2k/b mice, prior to divergence in viral load, weight loss, or NK cell phenotype. Finally, we further dissect NK cell involvement, finding no intrinsic differences in NK cell function, despite increased upregulation of activation markers and checkpoint receptors. In conclusion, these data dissect the genetic and immunologic underpinnings of Cmv5 and reveal a model in which polymorphism within the MHC region of the genome leads to the development of tissue damage and corrupts protective NK cell immunity during acute viral infection.


Assuntos
Infecções por Citomegalovirus , Muromegalovirus , Camundongos , Animais , Antígenos de Histocompatibilidade Classe I/genética , Células Matadoras Naturais , Tecido Linfoide , Camundongos Endogâmicos C57BL
12.
Netw Neurosci ; 7(4): 1351-1362, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144694

RESUMO

Extra temporal lobe epilepsy (eTLE) may involve heterogenous widespread cerebral networks. We investigated the structural network of an eTLE cohort, at the postulated epileptogenic zone later surgically removed, as a network node: the resection zone (RZ). We hypothesized patients with an abnormal connection to/from the RZ to have proportionally increased abnormalities based on topological proximity to the RZ, in addition to poorer post-operative seizure outcome. Structural and diffusion MRI were collected for 22 eTLE patients pre- and post-surgery, and for 29 healthy controls. The structural connectivity of the RZ prior to surgery, measured via generalized fractional anisotropy (gFA), was compared with healthy controls. Abnormal connections were identified as those with substantially reduced gFA (z < -1.96). For patients with one or more abnormal connections to/from the RZ, connections with closer topological distance to the RZ had higher proportion of abnormalities. The minority of the seizure-free patients (3/11) had one or more abnormal connections, while most non-seizure-free patients (8/11) had abnormal connections to the RZ. Our data suggest that eTLE patients with one or more abnormal structural connections to/from the RZ had more proportional abnormal connections based on topological distance to the RZ and associated with reduced chance of seizure freedom post-surgery.

13.
Brain Commun ; 5(6): fcad292, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37953844

RESUMO

Intracranial EEG is the gold standard technique for epileptogenic zone localization but requires a preconceived hypothesis of the location of the epileptogenic tissue. This placement is guided by qualitative interpretations of seizure semiology, MRI, EEG and other imaging modalities, such as magnetoencephalography. Quantitative abnormality mapping using magnetoencephalography has recently been shown to have potential clinical value. We hypothesized that if quantifiable magnetoencephalography abnormalities were sampled by intracranial EEG, then patients' post-resection seizure outcome may be better. Thirty-two individuals with refractory neocortical epilepsy underwent magnetoencephalography and subsequent intracranial EEG recordings as part of presurgical evaluation. Eyes-closed resting-state interictal magnetoencephalography band power abnormality maps were derived from 70 healthy controls as a normative baseline. Magnetoencephalography abnormality maps were compared to intracranial EEG electrode implantation, with the spatial overlap of intracranial EEG electrode placement and cerebral magnetoencephalography abnormalities recorded. Finally, we assessed if the implantation of electrodes in abnormal tissue and subsequent resection of the strongest abnormalities determined by magnetoencephalography and intracranial EEG corresponded to surgical success. We used the area under the receiver operating characteristic curve as a measure of effect size. Intracranial electrodes were implanted in brain tissue with the most abnormal magnetoencephalography findings-in individuals that were seizure-free postoperatively (T = 3.9, P = 0.001) but not in those who did not become seizure-free. The overlap between magnetoencephalography abnormalities and electrode placement distinguished surgical outcome groups moderately well (area under the receiver operating characteristic curve = 0.68). In isolation, the resection of the strongest abnormalities as defined by magnetoencephalography and intracranial EEG separated surgical outcome groups well, area under the receiver operating characteristic curve = 0.71 and area under the receiver operating characteristic curve = 0.74, respectively. A model incorporating all three features separated surgical outcome groups best (area under the receiver operating characteristic curve = 0.80). Intracranial EEG is a key tool to delineate the epileptogenic zone and help render individuals seizure-free postoperatively. We showed that data-driven abnormality maps derived from resting-state magnetoencephalography recordings demonstrate clinical value and may help guide electrode placement in individuals with neocortical epilepsy. Additionally, our predictive model of postoperative seizure freedom, which leverages both magnetoencephalography and intracranial EEG recordings, could aid patient counselling of expected outcome.

14.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961570

RESUMO

Objective: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current cortico-centric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural MRI in 1,602 adults with epilepsy and 1,022 healthy controls across twenty-two sites from the global ENIGMA-Epilepsy working group. Methods: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in i) all epilepsies; ii) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS); iii) non-lesional temporal lobe epilepsy (TLE-NL); iv) genetic generalised epilepsy; and (v) extra-temporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness. Results: Across all epilepsies, reduced total cerebellar volume was observed (d=0.42). Maximum volume loss was observed in the corpus medullare (dmax=0.49) and posterior lobe grey matter regions, including bilateral lobules VIIB (dmax= 0.47), Crus I/II (dmax= 0.39), VIIIA (dmax=0.45) and VIIIB (dmax=0.40). Earlier age at seizure onset (ηρ2max=0.05) and longer epilepsy duration (ηρ2max=0.06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls. Significance: We provide robust evidence of deep cerebellar and posterior lobe subregional grey matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in non-motor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellum subregions into neurobiological models of epilepsy.

15.
Brain ; 146(11): 4702-4716, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37807084

RESUMO

Artificial intelligence (AI)-based tools are widely employed, but their use for diagnosis and prognosis of neurological disorders is still evolving. Here we analyse a cross-sectional multicentre structural MRI dataset of 696 people with epilepsy and 118 control subjects. We use an innovative machine-learning algorithm, Subtype and Stage Inference, to develop a novel data-driven disease taxonomy, whereby epilepsy subtypes correspond to distinct patterns of spatiotemporal progression of brain atrophy.In a discovery cohort of 814 individuals, we identify two subtypes common to focal and idiopathic generalized epilepsies, characterized by progression of grey matter atrophy driven by the cortex or the basal ganglia. A third subtype, only detected in focal epilepsies, was characterized by hippocampal atrophy. We corroborate external validity via an independent cohort of 254 people and confirm that the basal ganglia subtype is associated with the most severe epilepsy.Our findings suggest fundamental processes underlying the progression of epilepsy-related brain atrophy. We deliver a novel MRI- and AI-guided epilepsy taxonomy, which could be used for individualized prognostics and targeted therapeutics.


Assuntos
Encéfalo , Epilepsia , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Inteligência Artificial , Estudos Transversais , Imageamento por Ressonância Magnética , Epilepsia/diagnóstico por imagem , Epilepsia/patologia , Atrofia/patologia
16.
EBioMedicine ; 97: 104848, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37898096

RESUMO

BACKGROUND: When investigating suitability for epilepsy surgery, people with drug-refractory focal epilepsy may have intracranial EEG (iEEG) electrodes implanted to localise seizure onset. Diffusion-weighted magnetic resonance imaging (dMRI) may be acquired to identify key white matter tracts for surgical avoidance. Here, we investigate whether structural connectivity abnormalities, inferred from dMRI, may be used in conjunction with functional iEEG abnormalities to aid localisation of the epileptogenic zone (EZ), improving surgical outcomes in epilepsy. METHODS: We retrospectively investigated data from 43 patients (42% female) with epilepsy who had surgery following iEEG. Twenty-five patients (58%) were free from disabling seizures (ILAE 1 or 2) at one year. Interictal iEEG functional, and dMRI structural connectivity abnormalities were quantified by comparison to a normative map and healthy controls. We explored whether the resection of maximal abnormalities related to improved surgical outcomes, in both modalities individually and concurrently. Additionally, we suggest how connectivity abnormalities may inform the placement of iEEG electrodes pre-surgically using a patient case study. FINDINGS: Seizure freedom was 15 times more likely in patients with resection of maximal connectivity and iEEG abnormalities (p = 0.008). Both modalities separately distinguished patient surgical outcome groups and when used simultaneously, a decision tree correctly separated 36 of 43 (84%) patients. INTERPRETATION: Our results suggest that both connectivity and iEEG abnormalities may localise epileptogenic tissue, and that these two modalities may provide complementary information in pre-surgical evaluations. FUNDING: This research was funded by UKRI, CDT in Cloud Computing for Big Data, NIH, MRC, Wellcome Trust and Epilepsy Research UK.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Estudos Retrospectivos , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Eletroencefalografia/métodos , Eletrocorticografia , Epilepsia Resistente a Medicamentos/cirurgia , Convulsões
17.
Epilepsia ; 64(12): 3307-3318, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857465

RESUMO

OBJECTIVES: Sudden unexpected death in epilepsy (SUDEP) is a leading cause of death for patients with epilepsy; however, the pathophysiology remains unclear. Focal-to-bilateral tonic-clonic seizures (FBTCS) are a major risk factor, and centrally-mediated respiratory depression may increase the risk further. Here, we determined the volume and microstructure of the amygdala, a key structure that can trigger apnea in people with focal epilepsy, stratified by the presence or absence of FBTCS, ictal central apnea (ICA), and post-convulsive central apnea (PCCA). METHODS: Seventy-three patients with focal impaired awareness seizures without FBTC seizures (FBTCneg group) and 30 with FBTCS (FBTCpos group) recorded during video electroencephalography (VEEG) with respiratory monitoring were recruited prospectively during presurgical investigations. We acquired high-resolution T1-weighted anatomic and multi-shell diffusion images, and computed neurite orientation dispersion and density imaging (NODDI) metrics in all patients with epilepsy and 69 healthy controls. Amygdala volumetric and microstructure alterations were compared between three groups: healthy subjects, FBTCneg and FBTCpos groups. The FBTCpos group was further subdivided by the presence of ICA and PCCA, verified by VEEG. RESULTS: Bilateral amygdala volumes were significantly increased in the FBTCpos cohort compared to healthy controls and the FBTCneg group. Patients with recorded PCCA had the highest increase in bilateral amygdala volume of the FBTCpos cohort. Amygdala neurite density index (NDI) values were decreased significantly in both the FBTCneg and FBTCpos groups relative to healthy controls, with values in the FBTCpos group being the lowest of the two. The presence of PCCA was associated with significantly lower NDI values vs the non-apnea FBTCpos group (p = 0.004). SIGNIFICANCE: Individuals with FBTCpos and PCCA show significantly increased amygdala volumes and disrupted architecture bilaterally, with greater changes on the left side. The structural alterations reflected by NODDI and volume differences may be associated with inappropriate cardiorespiratory patterns mediated by the amygdala, particularly after FBTCS. Determination of amygdala volumetric and architectural changes may assist identification of individuals at risk.


Assuntos
Epilepsias Parciais , Epilepsia Tônico-Clônica , Epilepsia , Apneia do Sono Tipo Central , Humanos , Apneia do Sono Tipo Central/diagnóstico por imagem , Apneia do Sono Tipo Central/etiologia , Convulsões , Epilepsias Parciais/diagnóstico por imagem , Epilepsias Parciais/complicações , Eletroencefalografia/métodos , Tonsila do Cerebelo/diagnóstico por imagem , Apneia
18.
Cereb Cortex ; 33(22): 10959-10971, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37798142

RESUMO

Fluid intelligence encompasses a wide range of abilities such as working memory, problem-solving, and relational reasoning. In the human brain, these abilities are associated with the Multiple Demand Network, traditionally thought to involve combined activity of specific regions predominantly in the prefrontal and parietal cortices. However, the structural basis of the interactions between areas in the Multiple Demand Network, as well as their evolutionary basis among primates, remains largely unexplored. Here, we exploit diffusion MRI to elucidate the major white matter pathways connecting areas of the human core and extended Multiple Demand Network. We then investigate whether similar pathways can be identified in the putative homologous areas of the Multiple Demand Network in the macaque monkey. Finally, we contrast human and monkey networks using a recently proposed approach to compare different species' brains within a common organizational space. Our results indicate that the core Multiple Demand Network relies mostly on dorsal longitudinal connections and, although present in the macaque, these connections are more pronounced in the human brain. The extended Multiple Demand Network relies on distinct pathways and communicates with the core Multiple Demand Network through connections that also appear enhanced in the human compared with the macaque.


Assuntos
Macaca , Substância Branca , Animais , Humanos , Vias Neurais/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Mapeamento Encefálico , Haplorrinos , Imageamento por Ressonância Magnética
19.
PLoS One ; 18(9): e0291076, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37682929

RESUMO

Interleukin-6 (IL-6) is a pleiotropic cytokine that coordinates host immune responses to infection. Though essential to the acute phase response, prolonged IL-6-mediated recruitment of mononuclear cells has been implicated in chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, and Crohn's disease. Accordingly, identifying novel therapeutics that diminish circulating IL-6 levels could benefit individuals suffering from chronic inflammation. In immunocompetent hosts, bacterial lipopolysaccharide (LPS) recognition by toll-like receptor 4 (TLR4) activates the transcription factor NF-κB, driving macrophage production of IL-6. Interestingly, both citrate-stabilized and 'green' synthesized gold nanoparticles (AuNPs) have been shown to modulate the cytokine responses of LPS-activated macrophages. Here we demonstrate that AuNPs, synthesized with commercial and locally sourced honey, downregulate LPS-induced macrophage secretion of IL-6. Compared to LPS-only controls, inhibition of IL-6 levels was observed for all three types of honey AuNPs. The effect was likely driven by honey AuNP-mediated perturbation of the TLR4/NF-κB signaling pathway, as evidenced by a reduction in the phosphorylation of IκB. Further investigation into the anti-inflammatory properties of honey AuNPs may yield novel therapeutics for the treatment of chronic inflammation.


Assuntos
Mel , Nanopartículas Metálicas , Humanos , Interleucina-6 , Ouro/farmacologia , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like , NF-kappa B , Citocinas , Inflamação
20.
Nat Commun ; 14(1): 5054, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598206

RESUMO

While classic views proposed that working memory (WM) is mediated by sustained firing, recent evidence suggests a contribution of activity-silent states. Within WM, human neuroimaging studies suggest a switch between attentional foreground and background, with only the foregrounded item represented in active neural firing. To address this process at the cellular level, we recorded prefrontal (PFC) and posterior parietal (PPC) neurons in a complex problem-solving task, with monkeys searching for one or two target locations in a first cycle of trials, and retaining them for memory-guided revisits on subsequent cycles. When target locations were discovered, neither frontal nor parietal neurons showed sustained goal-location codes continuing into subsequent trials and cycles. Instead there were sequences of timely goal silencing and reactivation, and following reactivation, sustained states until behavioral response. With two target locations, goal representations in both regions showed evidence of transitions between foreground and background, but the PFC representation was more complete, extending beyond the current trial to include both past and future selections. In the absence of unbroken sustained codes, different neuronal states interact to support maintenance and retrieval of WM representations across successive trials.


Assuntos
Objetivos , Primatas , Humanos , Animais , Lobo Parietal/diagnóstico por imagem , Neurônios , Memória de Curto Prazo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...